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The steady flow generated by an arbitrary field of monochromatic internal waves in a viscous continuously stratified liquid is 
calculated in the first order of perturbation theory. The streamline pattern is calculated for a beam of harmonic waves excited 
by a point dipole. The steady force, which a beam incident on rigid plane surface exerts, is also calculated. © 2001 Elsevier Science 
Ltd. All rights reserved. 

A calculation of the mass transport by wave motions (Stokes drift) in the case of surface waves [1, 2] 
agrees with experiments [3]; when calculating the wave drift at the interfaces of uniform homogeneous 
liquids, the effect of the boundary layers that arise is also taken into account [4]. Stokes drift in the 
theory of internal waves in a continuously stratified liquid, the equations of motion of which [5] differ 
considerably from the equations of the theory of surface waves, has been investigated to a lesser extent. 
The development of the theory of slightly non-linear internal waves in a viscous medium, which satisfy 
the boundary conditions exactly, enables one to calculate not only wave mass transport but also the 
force of the waves on a reflecting surface, which is important for problems of the dynamics of the 
interaction of the atmosphere and the underlying surface, and estimates of the action of oceanic internal 
waves on large-scale structures. 

The purpose of this paper is to calculate the average velocities, the distortions of the stratification 
and the force on an obstacle due to a field of two-dimensional monochromatic internal waves in a viscous 
continuously stratified medium. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  A N D  T H E  B O U N D A R Y  C O N D I T I O N S  

The system of equations of the two-dimensional motion of a viscous incompressible continuously 
stratified liquid in a system of coordinates (x, y, z) has the form [6]. 

--~-x + vpAux + 

+ zV~-x-~-x oz ~ oz ox j 

P ~_~ Ou +v~"=~+vz + vpAvz + (1.1) 
at ~x ~z : -  

+ Ox~ ~z ~x_ ~z ~z 
v - -  - - +  + 2 v - -  - p g +  f z  

~P ~P ~P 0Ux + ~ = 0; A = ~2 ~2 
+°x Txx +v Tz : ° '  oz 2 

where p, P, (Ox, o~) are the total density, pressure and velocity, v is the kinematic viscosity, which is 
assumed to be constant, and ( fx ,  f z )  are the force sources which give rise to the motion of the liquid; 
the z axis is directed in the opposite direction to the acceleration due to gravity g. 
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We will consider the motions in a medium with an arbitrary continuous density distribution P0(Z) and 
a corresponding hydrostatic pressure profile 

z 
Po(Z) -= Po(Zo)- g J'Po(~)d~ 

Zo 

The boundary conditions are the no-slip conditions for the velocity on the solid surfaces S in the liquid: 
Ox s = Oz s = 0, and also the decay of all the perturbations at infinity. 

Taking into account the two-dimensional nature of the problem and the incompressibility of the liquid, 
in the calculations below we will use the stream function qs, related to the velocity as follows: 

u x = aw/az, uz = -aW/ax (1.2) 

Introducing the density and pressure perturbations 

P --) P0(z) + P, p --) p0(z) + p (1.3) 

and substituting expressions (1.2) and (1.3) into Eq. (1.1), we obtain the system of equations 

(Po + p)(V,~ + v~'l'~ -%'I '~)= -P~ +V(po + p)A,e~ + 

+ 2vp,Vxz + v(p~) + p~ )(Vzz - Wxx) + fx  

(Po + P)(-~,., - ~ U z ~  + ~ x z )  = -Pz - v(Po + P)A~F~ + (1.4) 

+ vpx(U/u  - ~ /xx ) -  2v(p~) + Pz )~IJxz - Pg + f z  

P, + Pr~z - (P~ + P~)% = 0 

Here and henceforth the subscripts t, x and  z denote differentiation with respect to the corresponding 
variable. 

2. STOKES F L O W  IN AN I N T E R N A L - W A V E  F I E L D  

We will calculate the flow generated due to non-linear effects by an arbitrary field of monochromatic 
internal waves with frequency co, the stream function of which is described by the relation 

Wj = Re[¥(x, z)e -ic°t ] = 1 [ ~ / ( x ,  z)e - i~  + ~* (x, z)e i~ ] (2.1) 

where the asterisk denotes complex conjugation. The initial field (2.1) generates a steady (Stokes) flow 
and waves of higher harmonics. The field W1 satisfies the following linearized systems of equations from 
(1.4) 

P0Wttz = -Pix + vP0AWiz + vp~ (~lu - ~lxx ) + f x  

PoW]~ = Ptz + vP0AWtx + 2vP0~lxz + Pig - fz  (2.2) 

PJz - p ~ I ' j ,  = 0 

We will seek a solution of the non-linear system of equations (1.4) in the form of expansions in 
harmonics of the frequency co for the stream function 

W(x,z, t)  = ~s(x , z )+ ~, {W;(x,z)e i"~ + W~(x,z)e -i"~] (2.3) 
n=l  

and similar expansions for the pressure and density. Here and henceforth terms with the subscripts 
describe Stokes flow. In the zeroth approximation, non-linear corrections to the initial field with 
frequency co can be neglected, and we can assume 

V~ = ~V*(x , z ) ,  V~- = Y2V(x,z) (2.4) 
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It follows from Eqs (2.2) that in the part of space free from sources the function ~ satisfies the equation 
of the internal waves 

N 2  • • • ir 

A¥_~_T~ ~_~vzx2~+po~ ~ 2ivp~ A¥~-tvPi~(~ -~=)=0 
CO Po O)Po (Opo zz (2.5) 

in deriving which we have not use the traditional Boussinesq approximation. Here  N2(z) -- g/A is the 
square of the buoyancy frequency and A = [d In O0(z)/dz] -1 is the scale of the stratification. Substituting 
(2.3) and similar expressions for the pressure and density into system (1.4) and retaining only quadratic 
terms in q~l, we obtain, taking into account Eqs (2.2), the following system of equations in W~, Ps and 
O, 

where 

(Po + P, )(u/,, %x ,  - u/ ,x u/,,, ) + P,~, - v(p0 + p,)AU/,, _ 

-2vp,,u/ , , ,  - v(p;) + p, , ) (%= - % = )  = F" 

(P0 + P,)C-%~U/,~, + U/,,U/,,~) +/',~ + V(Po + p, )AU/ , ,  + 

+ vPsx (U/,,, - u/szz ) + 2v(p~) + Psz )u/s= + Psg = FZ 

p,,u/,, - (p~) + P,, )U/= = Q 

(2.6) 

FX : (-P~ u/,z - P0 (u/izu/mxz - u/ixu/J~z) + 

+ v|pfAu/iz + 2Pl,u/ixz + Plz(u/l~ - q'~x~ )]) 

F~ = <-PIU/,x - P0(u/l~u/txz - u/izu/l~ ) - (2.7) 

- v[PlAU/I~ + 2plzu/l~ z + pj~(Wj~x - u/Izz)]) 

a = (p.,u/i, - pl,u/.z) 

The angular brackets denote averaging over the period 2~/co. 
Hence, in the approximation considered, the non-linear terms in system (1.1) are replaced by effective 

stationary force sources (FX(x, z) and FZ(x, z)) in the equations of motion and by a mass source with 
flow rate Q(x, z) in the equation of continuity. 

I t  follows from (2.1) and the last equation in (2.2) that 

• 

Pl ( ¥ x e - , ~  _*  io~ = - w x e  ) 

Substituting this expression and relation (2.1) into (2.7) we obtain 

F'= tVV* • VxV  
4 t z x z - ~ x V z z -  A - 

iv , , / 

I 

F '=P° tv  V* • V,V  
4 t z x x - ¥ x ~ x z  + + A (2.8) 

+ iv , , , } 
toA [~¢ A¥,  + ~ , x ( ¥ ~  -~zz)]  +c .c .  

1 

Q = ip~ a , , ) 
4to ax (q t x~z  - ~ z ~ x  

where c.c. denotes the complex-conjugate quantity. It follows from the form of the expression for Q in 
(2.8) that such a source has zero total mass transport (~Q(x ,  z )dxdz  = 0). 

Assuming that the velocities of the induced wave flow are small, system (2.6) can be linearized: 
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P~ - vpoA%~ + vp~,(%~. - " I ' ~ )  : F ~ 

Psz + vP0A~Ps~ + 2vp0~Fsx~ + Psg : Fz (2.9) 

-p~)~P~ = O 

Comparing the last equations in systems (2.8) and (2.9), we obtain the stream function of the Stokes 
flow generated by an arbitrary field of monochromatic internal waves, 

i * ~/z(x,z)¥x(x,z)] (2.10) • s(x,z) = - - ~ l v x ( x , z ) V J x ,  z ) -  * 

It can be seen that if the field ¥(x, z) satisfies the no-slip conditions, we have 

V ls = v, l s = o  

i.e. the Stokes flow also satisfies the boundary conditions exactly. Substituting the stream function of 
the isolated wave beam excited by a compact source [7] into expression (2.10), we obtain that the velocity 
of the induced flow vanishes in the ideal-liquid approximation (v = 0). In regions where several wave 
beams intersect, a Stokes drift also occurs when there is no viscosity. 

Eliminating the pressure Ps from system (2.9) and using relations (2.8), we obtain the following 
equation for the density perturbation in Stokes flow 

4g . . ~'0 psx =(~zA~x _~xA~z)  + 2~xA~* iv 2 * A co A ¥x¥~ +c .c .  (2.11) 

Here we have omitted terms of the following orders of smallness in 1/A. 
The relative order of smallness of the terms in relation (2.11) depends on the position of the point 

of observation. Far from sources and reflecting surfaces, where the stream function of the initial field 
varies slowly, the principal term is the first one. The smallness of the other two terms follows from the 
condition of weak stratification and low viscosity (A >> k. ~ 5v, where k is the characteristic scale of the 
beam and 8v = ~"v/c0 is the transverse scale of the internal boundary flow [5]), which is satisfied both 
under laboratory and natural conditions. In the region of sources and reflecting surfaces, where internal 
boundary flows exist in addition to waves [8], the principal terms are the first and third, since here the 
action of the Laplace operator A on the function is equivalent to multiplying it by the quantity e0/v. In 
the intermediate region all three terms are comparable in value, when the characteristic spatial scale 
of the internal waves k. is of the order of the viscous wave scale Lv = (vg)I/3/N [7]. 

Integrating relations (2.11) taking Eqs (2.5) into account and retaining only the principal term, we 
obtain that, far from sources and bounding surfaces, the density perturbation in Stokes flow has the 
form 

p0 N2 . • 
ps(X, z) = ~ l V z V x x  - V,V;~ + V:V= - V;Vxz] (2.12) 

As an example, consider Stokes flow induced by a beam of internal waves with frequency co, 
propagating at an angle 0 = arcsin (co/N) to the horizontal. The beam is excited by a point dipole in 
an exponentially stratified liquid. The stream function of the initial field in a system of coordinates 
(/9, q) attached to the beam, has the form [9] 

_( v 
V(P 'q )=D°~ exp(ikp-52vk~q)dk' ~iv k2Ncos0J  (2.13) 

0 

The pattern of isolines of the stream function q's (they are tangential to the velocity field), calculated 
from (2.10) and (2.13), are shown in the figure in (p*, q*) coordinates, normalized to the scale of the 
internal boundary flow 8v : p* = p/Sv, q* = q/Sv. The arrows indicate the directions of steady motion 
of the liquid. Hence, the phase velocity and the Stokes drift velocity are in opposite directions at the 
centre of the beam of internal waves. 
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3. THE STEADY FORCE OF INTERNAL WAVES 

We will consider the steady component of the force of a beam of periodic internal waves, incident on 

be represented in the form [9] 

¥ (p, q) = ~ D(k)exp(ikp - 5~k3q)dk (3.1) 
0 

where D(k) is the spectral function of the source and (p, q) is the attached system of coordinates (the 
q axis is directed along the beam). The total field, which consists of the incident and reflected beams, 

V (x, z) = ~ a(k)~p(k, z)ei~dk (3.2) 
0 

q~(k,z)=ea~,z kb +kW e_ik,z + 2k,, e_i~t,z (3.2) 
kt, - kw kb - kw 

i5 2vk 3 
kw(k ) = - k  ctgO ÷ ~l~-  sin4 O, k b ( k ) = ( l + i )  V2v 

where 

A(k) - sin 0 ~ ) 

I-fete L is t~te dfstartce from tire source to tt~e pCatle, measured aCotxg t~te beam. 
It follows from the first relation of (3.2) that 

~x(x,O) = W~(x,0) = 0 (3.3) 

The normal steady component ~;z and the tangential steady component ~x of the total force acting 
on unit area of the reflecting plane, can be represented in the form [6] 

= g(x,O)+Zoov%  l =o, = poV(%= - %, , ) lz=o (3A) 

where, by virtue of relations (3.3), ~x = 0. The pressure Ps(x, 0) is found from the first equation of 
(2.9), which, taking (3.3) into account, can be written in the form 

P (x,O) = poV'l',.z[ =o 

Substituting (2.10) and (3.2) here, we obtain 
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ps (x ,O)=3iPoVT~ k" 
4¢o "o'o k ' - k " A ( k ' ) A * ( k " )  x 

• * • t  i ( k ' - k " ) x  • •• X tpu(k ,O)tpzz(k ,0)e dk dk + c . c .  (3.5) 

Integrating (3.5) with respect to x from --oo to +0% we obtain the force acting on an infinite strip of 
unit width (along the y axis), 

~ =  3ircp°v ~ k[I A(k)12 h'(k)h*(k)+ I h(k)12 A'(k)A* (k)]dk + c. c.  
2to o 

h(k ) = 2kw(k )[kb(k ) + kw(k )] (3.6) 

The prime denotes a derivative with respect to k. 
I f  the beam is excited by a point dipole a distance L along the beam from the plane, we have 

o0 exd 8 k3- L/ A(k)= 
sin0 e~ sin 3 0 )  

and, taking the expressions for kw and kb from (3.2) into account, we obtain 

2c°s3° 
~ = - 1 8 n p ° U m  sin0 (82L) :A F (3.7) 

Here  we have introduced the maximum oscillatory velocity in the beam Om at the point where it is 
incident on the reflecting plane. 

Hence, the steady component  of  the force generated by a beam of internal waves, incident on a 
horizontal reflecting plane, increases as the square of  its amplitude and also increases monotonically 
as the frequency of the wave decreases (it follows from the form of (3.7) that in this case the source 
approaches the reflecting surface along the vertical and the area of  the interaction spot increases). The 
expressions obtained are inapplicable as co ---> 0, since the calculations of  the roots of  the dispersion 
equation are approximate. The use of the exact solutions of  the dispersion equation removes the 
"infrared" divergence in (3.7). 

The force acting on an inclined reflecting surface should be calculated in a similar way using the 
solutions of  the dispersion equation of the internal waves in a local system of coordinates connected 
with them. 
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